Four N -(2-hydroxybenzylidene)aniline derivatives \dagger

John Burgess, ${ }^{a}$ John Fawcett, ${ }^{a}$ David R. Russell, ${ }^{a}$ Syeda R. Gilania and Vitor Palma ${ }^{b}$
${ }^{a}$ Department of Chemistry, University of Leicester, Leicester LE1 7RH, England, and ${ }^{\text {b }}$ Departmento de Química, Faculdad de Ciências, Universidade de Porto, 4150 Porto, Portugal. E-mail: jxf@leicester.ac.uk

(Received 10 March 1999; accepted 17 June 1999)

Abstract

The molecular structures of N-(2-hydroxybenzylidene)-4-fluoroaniline, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{FNO}, N$-(2-hydroxybenzylidene)-4-trifluoromethoxyaniline, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{2}, \mathrm{~N}$-(2-hydroxy-5-chlorobenzylidene)-4-chloroaniline, $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}$, and N-(2-hydroxybenzylidene)-4-nitroaniline, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$, have been determined. In each case, the conformations are such that the hydroxy group is aligned towards the N atom facilitating a strong intramolecular hydrogen bond.

Comment

Salicylideneanilines have proved popular ligands for many years. Although structures have been reported for a number of their complexes, rather few of these ligands have been structurally characterized by X-ray diffraction techniques. The structures of N -(2-hydroxy-benzylidene)-4-methylaniline (Aldoshin et al., 1982) and N-(2-hydroxybenzylidene)-perfluoroaniline (Lindeman et al., 1981) were reported some time ago; we now report structures of four further ligands of this type, N-(2-hydroxybenzylidene)-4-fluoroaniline, (1), N-(2-hy-droxybenzylidene)-4-trifluoromethoxyaniline, (2), N -(2-hydroxy-5-chlorobenzylidene)-4-chloroaniline, (3), and N-(2-hydroxybenzylidene)-4-nitroaniline, (4).

(1) $R^{1}=\mathrm{F} ; R^{2}=\mathrm{H}$
(2) $R^{1}=\mathrm{OCF}_{3}: R^{2}=\mathrm{H}$
(3) $R^{1}, R^{4}=\mathrm{Cl}$
(4) $R^{2}=\mathrm{NO}_{2} ; R^{2}=\mathrm{H}$

For all four structures the presence of a strong intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond is unequivocally established by locating the hydroxy-H atom and the $\mathrm{C} 5-\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~N} 1$ geometry. The $\mathrm{C} 5-\mathrm{Ol}-\mathrm{H} 1 A$

[^0]angles are in the range $100(3)$ to $112(2)^{\circ}$, the $\mathrm{Ol}-$ H1A distances are between 0.83 (3) and 1.02 (6) \AA and the $\mathrm{H} 1 A \cdots \mathrm{Nl}$ distances are in the range $1.62(7)$ to 1.87 (3) \AA (Table 1). The hydrogen bonds are also evidenced by the orientation in all cases of the $\mathrm{C} 7=\mathrm{N} 1$ bond to be in the plane of the C1-C6 ring with the minimum $\mathrm{O} 1 \cdots \mathrm{~N} 1$ distances facilitated by the geometry (Figs. 1 to 4). The O1 \cdots N1 distances are indicative of a strong hydrogen bond, but are a function of the molecular geometry. The planar arrangement is to be

Fig. 1. The molecular structure of (1) showing the atom-numbering scheme and 30% displacement ellipsoids. The intramolecular hydrogen bonds are shown as dashed lines.

Fig. 2. The molecular structure of (2) showing the atom-numbering scheme and 30% displacement ellipsoids. The intramolecular hydrogen bonds are shown as dashed lines.

Fig. 3. The molecular structure of (3) showing the atom-numbering scheme and 30% displacement ellipsoids. The intramolecular hydrogen bonds are shown as dashed lines.

Fig. 4. The molecular structure of (4) showing the atom-numbering scheme and 30% displacement ellipsoids. The intramolecular hydrogen bonds are shown as dashed lines.
expected as a result of π orbital interactions. However, the opposite planar orientation with the ring and the $\mathrm{C} 7=\mathrm{N} 1$ bond rotated 180° with respect to each other, which would still allow π-bond interaction without the hydrogen bond, is not observed for any reported structure of this type. This may be a result of the mechanism of formation allowing only one conformation.

Compounds (1), (2) and (4) are essentially planar with interplanar angles between the rings of 2.17 (10), 3.1 (2) and $3.16(14)^{\circ}$, respectively, similar to that found for the 4-methyl derivative (6.47°; Aldoshin et al., 1982). By contrast the interplanar ring angle of (3) is 44.54 (6) ${ }^{\circ}$, comparable with those of the perfluoroaniline derivative (Lindeman et al., 1981) which was studied over a range of temperatures and found to have two different forms with interplanar angles of 44.86 and 44.45° for one form and 40.06° for the second form.

The packing arrangements for the halogen-substituted compounds give rise to clearly defined channels of halogen atoms. The chloro-substituted derivative shows a typical stacking arrangement (Fig. 5) with molecules aligned along the b axis with $2.57 \AA(b / 2)$ interplanar distance between the molecules, the Cl atoms form channels perpendicular to the a axis.

Fig. 5. The unit-cell packing of (3) viewed down the b axis showing the channels of Cl atoms and the stacking perpendicular to the b axis.

Experimental

The compounds were prepared by reacting salicylaldehyde with the appropriate aniline derivative. To an ethanolic solution of salicylaldehyde ($1 \mathrm{M}, 25 \mathrm{ml}$), a few drops of pH 5 $\mathrm{HCl} / \mathrm{NaOH}$ solution were added to protonate the aldehyde. To this was added an ethanolic solution of the substituted aniline ($1 M, 25 \mathrm{ml}$). The reaction mixture was refluxed with stirring for 1 h . The solutions were then cooled and the resulting precipitates were washed with water. Products were recrystallized from a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane ($1: 10$) solution.

Compound (1)

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{FNO}$
$M_{r}=215.22$
Monoclinic
$P 2_{1} / c$
$a=12.820(1) \AA$
$b=5.787(1) \AA$
$c=14.817(2) \AA$
$\beta=107.93(2)^{\circ}$
$V=1045.9(2) \AA^{3}$
$Z=4$
$D_{x}=1.367 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer
ω scans
Absorption correction: none
2299 measured reflections
1642 independent reflections
1224 reflections with
$I>2 \sigma(I)$
$R_{\mathrm{int}}=0.020$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.096$
$S=1.033$
1642 reflections
150 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0534 P)^{2}\right.$
$+0.1735 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Compound (2)

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{2}$
$M_{r}=281.23$
Monoclinic
$P 2_{1} / c$
$a=5.647$ (1) \AA
$b=7.977$ (2) \AA
$c=29.197$ (4) \AA
$\beta=90.63$ (2) ${ }^{\circ}$
$V=1315.1(4) \AA^{3}$
$Z=4$
$D_{x}=1.420 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer ω scans
Absorption correction: none 3195 measured reflections
$\theta_{\text {max }}=24^{\circ}$
$h=-1 \rightarrow 14$
$k=-1 \rightarrow 6$
$l=-16 \rightarrow 16$
3 standard reflections every 100 reflections
every 100 reflections
intensity decay: $<2 \%$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.128 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.127 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction:
SHELXTLPC (Sheldrick, 1996)

Extinction coefficient: 0.014 (2)

Scattering factors from International Tables for Crystallography (Vol. C)
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 23 reflections
$\theta=5.44-12.43^{\circ}$
$\mu=0.099 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block
$0.48 \times 0.45 \times 0.26 \mathrm{~mm}$
Yellow

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 19
reflections
$\theta=4.91-12.16^{\circ}$
$\mu=0.124 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block
$0.38 \times 0.38 \times 0.22 \mathrm{~mm}$
Yellow
$\theta_{\max }=24^{\circ}$
$h=-1 \rightarrow 6$
$k=-1 \rightarrow 9$
$l=-33 \rightarrow 33$

2066 independent reflections 1128 reflections with

$$
I>2 \sigma(I)
$$

$R_{\text {int }}=0.030$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.069$
$w R\left(F^{2}\right)=0.189$
$S=1.154$
2066 reflections
186 parameters
H atoms treated by a
mixture of independent
and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1030 P)^{2}\right.$
$+0.9747 \mathrm{P}]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Compound (3)

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}$
$M_{r}=266.11$
Monoclinic
$P 2_{1} / c$
$a=27.419$ (7) \AA
$b=6.901$ (2) \AA
$c=6.137$ (1) \AA
$\beta=95.57$ (2) ${ }^{\circ}$
$V=1155.8(5) \AA^{3}$
$Z=4$
$D_{x}=1.529 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens P4 diffractometer ω scans
Absorption correction: none
2375 measured reflections
1506 independent reflections
1352 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.027$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.091$
$S=1.129$
1506 reflections
158 parameters
H atoms treated by a
mixture of independent
and constrained refinement

3 standard reflections every 100 reflections intensity decay: 1.5%
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.436 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.229 \mathrm{e}^{-3}$
Extinction correction: SHELXTL/PC (Sheldrick, 1996)

Extinction coefficient: 0.070 (9)

Scattering factors from International Tables for Crystallography (Vol. C)

Mo $K \alpha$ radiation
 $\lambda=0.71073 \AA$

Cell parameters from 19 reflections
$\theta=5.14-12.33^{\circ}$
$\mu=0.541 \mathrm{~mm}^{-1}$
$T=190$ (2) K
Plate
$0.64 \times 0.62 \times 0.29 \mathrm{~mm}$ Yellow

```
\(\theta_{\text {max }}=22.49^{\circ}\)
\(h=-29 \rightarrow 29\)
\(k=-7 \rightarrow 1\)
\(l=-1 \rightarrow 6\)
3 standard reflections every 100 reflections intensity decay: \(<1 \%\)
```

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0442 P)^{2}\right. \\
\quad+0.7358 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.002 \\
\Delta \rho_{\max }=0.215 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.223 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: none } \\
\text { Scattering factors from } \\
\text { International Tables for } \\
\text { Crystallography (Vol. C) }
\end{gathered}
$$

Monoclinic
$P 2_{1} / c$
$a=12.413$ (2) \AA
$b=5.744$ (2) \AA
$c=15.597$ (3) \AA
$\beta=97.69$ (2) ${ }^{\circ}$
$V=1102.1(5) \AA^{3}$
$Z=4$
$D_{x}=1.460 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer
ω scans
Absorption correction: none
2393 measured reflections
1909 independent reflections 1418 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.040$
Cell parameters from 40 reflections
$\theta=5.28-12.00^{\circ}$
$\mu=0.106 \mathrm{~mm}^{-1}$
$T=190$ (2) K
Block
$0.60 \times 0.40 \times 0.19 \mathrm{~mm}$
Orange

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.124$
$S=0.849$
1909 reflections
167 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0768 P)^{2}\right. \\
& +1.6682 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.020 \\
& \Delta \rho_{\text {max }}=0.171 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.178 \mathrm{e}^{-3} \\
& \text { Extinction correction: none } \\
& \text { Scattering factors from } \\
& \text { International Tables for } \\
& \text { Crystallography (Vol. C) }
\end{aligned}
$$

Table 1. Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$ for compounds (1) to (4)

	$\mathrm{O} 1-\mathrm{H} 1 A$	$\mathrm{H} \mid A \cdots \mathrm{~N} 1$	$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 1$
Compound (1)	$0.94(3)$	$1.76(3)$	$150(2)$
(2)	$1.02(6)$	$1.62(7)$	$158(5)$
(3)	$0.83(3)$	$1.83(3)$	$153(3)$
(4)	$0.92(3)$	$1.87(3)$	$140(3)$

For all structures, the hydroxy-H1A atoms were located from difference Fourier maps and included as normal atoms in refinement cycles. All other H atoms were included in calculated positions ($\mathrm{C}-\mathrm{H}=0.96 \AA$) with isotropic displacement parameters set to $1.2 U_{\mathrm{eq}}(\mathrm{C})$.

For all compounds, data collection: XSCANS (Fait, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTLPC (Sheldrick, 1996); program(s) used to refine structure: SHELXTL/$P C$; molecular graphics: $S H E L X T L P C$; software used to prepare material for publication: SHELXTL/PC.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1547). Services for accessing these data are described at the back of the journal.

References

Aldoshin, S. M., Knyazhanskii, M. I., Tymyanskii, Ya. R., Atovmyan, L. O. \& D'yachenko, O. A. (1982). Khim. Fiz. (Sov. J. Chem. Phys.), pp. 1015-1018.

Fait, J. (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Lindeman, S. V., Andrianov, V. G., Kravcheni, S. G., Potapov, V. M., Potekhin, K. A. \& Struchkov, Yu. T. (1981). Zh. Strukt. Khim. 22, 123-124.
Sheldrick, G. M. (1996). SHELXTLIPC. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1999). C55, 1710-1711

(-)-Sparteinium bromide

Alessandra Farina, Stefano Valdo Mellle, Maria Teresa Messina, Pierangelo Metrangolo and Giuseppe Resnati

Dipartimento di Chimica, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy. E-mail: meille@dept. chem.polimi.it
(Received 22 December 1998; accepted 16 June 1999)

Abstract

The title compound, (7S)-(7 $7 \mathrm{a}, 7 \mathrm{a}, 14 \alpha, 14 \mathrm{a} \beta)-1,3,4,-$ $7,7 \mathrm{a}, 8,9,10,11,13,14,14 \mathrm{a}$-dodecahydro-7,14-methano$2 H, 6 H$-dipyrido [1,2-a: $\left.1^{\prime}, 2^{\prime}-e\right][1,5]$ diazocin-5-ium bromide ($\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{~N}_{2}^{+} \cdot \mathrm{Br}^{-}$), is an effective reagent for the resolution of chiral perhalocarbons. All four rings in the sparteinium ion adopt a chair conformation, allowing an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond. Weak hydrogen-bond-like interactions between the cation and anion are apparent.

Comment

(-)-Sparteine is one of the best known members of the lupin alkaloids (Merck, 1989). It has been isolated from various Lupinus and Cytisus species and is widely distributed in the Papilionacee (Hesse, 1981). From the pharmacological point of view, this alkaloid is endowed with oxytoxic activity, while from the chemical point of view it has been used effectively as a chiral catalyst and as a reagent in asymmetric synthesis (Hashihayata et al., 1997; Nishimura et al., 1997; Hoppe et al., 1990). (-)-Sparteine has a semi-rigid structure; in the free base, ring C adopts a boat conformation but, upon chelation of a cation, inversion of configuration occurs on N16 and ring C adopts a chair conformation. In the resulting nest-like structure, the nitrogen lone pairs converge towards the centre of the molecular concavity, allowing an effective bidentate interaction with metal ions (Lopez et al., 1998; Hoppe et al., 1995; Motevalli et al., 1993).

Recently, we have resorted to the related ability to staple the proton, and indirectly the bromide ion, in (- -sparteinium bromide, (I), to resolve 1,2 -dibromohexafluoropropane into single enantiomers (Farina et al., 1999). This procedure relies on the self-assembly of the sparteinium bromide unit with one of the enantiomers of the perhalocarbon into a chiral cocrystal. Since the procedure is general, the crystal structure of (I) is reported herein to show how the interactions of additional species with the Br^{-}ion influence the relation of the halide to the sparteinium ion.

(I)

Consistent with the results and the literature data discussed by Kubicki et al. (1996), all four rings in the sparteinium ion of (I) adopt chair conformations, with the N16 configuration inverted with respect to that of the free base. In this conformation, the distance between N1 and N16 is 2.714 (8) \AA, allowing an intramolecular hydrogen-bond interaction between N16 and the proton on N1 (Table 2). The structural and conformational features of the sparteinium ion in (I) are very similar to those found in the sparteinium hydrobromideperhalocarbon cocrystal (Farina et al., 1999). A significant difference is that the protonated nitrogen is N1 in the pure hydrobromide and N16 in the cocrystal. Shorter $\mathrm{Br} \cdots \mathrm{N}$ distances reasonably involve the protonated nitrogen, and accordingly the $\mathrm{Br} \cdots \mathrm{N} 1$ and the $\mathrm{Br} \cdots \mathrm{Nl} 6$ distances change from 3.552 (6) and 3.672 (6) in (I) to 3.622 (6) and 3.548 (6) \AA in the cocrystal. Related minor differences involve the short quasi-hydrogen-bond interactions between cation H atoms and the bromide ion. Relevant parameters of these interactions for (I) are given in Table 2.

($)^{2}$
Fig. I. A view of (I) showing the atom-labelling scheme. Displacement ellipsoids are plotted at the 40% probability level, while H atoms are of an arbitrary size. Geometric parameters of the bromide ion interactions and of the hydrogen bond involving N16 are given in Table 2.

[^0]: \dagger Systematic names: 2-(4-fluorophenyliminomethyl)phenol, 2-(4-trifluoromethoxyphenyliminomethyl)phenol, 5-chloro-2-(4-chlorophenyliminomethyl)phenol and 2-(4-nitrophenyliminomethyl)phenol.

